A New Approach for Free Vibration Analysis of Thin-Walled Box Girder Considering Shear Lag Effect
Author(s): |
Zuolong Luo
Haoyun Yuan Xirong Niu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2019, v. 2019 |
Page(s): | 1-10 |
DOI: | 10.1155/2019/3902828 |
Abstract: |
The thin-walled box girder (T-WBG) is widely applied in the long-span bridge structures during the past decades due to its lighter self-weight and better mechanical properties. The shear lag effect (SLE), an essential aspect of T-WBG which governs the stress and the deformation, is rather necessary to be revealed properly. The extraordinary issue of T-WBG analysis nowadays is the SLE impact on its dynamical response to external load. This paper proposes an improved finite element method (FEM) to obtain the realistic vibration characteristics of the T-WBG considering the SLE by theory analysis and formula derivation. Firstly, based on the classical plate and shell theory as well as beam theory, the T-WBG was divided into shell subunit for the roof and beam subunit for web and floor, respectively. Secondly, a 3-order polynomial which is consistent with the experiment results was adopted as the axial-displacement interpolation function of the roof subunit, whose nodal displacements parameters were also taken as the basic. Thirdly, the nodal displacement parameters of the web subunit and floor subunit were deduced by the basic according to the principle of deflection consistency. It is shown through a numerical example that the proposed method is much more economical to achieve reasonable accuracy than traditional FEM analysis software when dealing with the free vibration problem of the T-WBG considering the SLE. Besides, it is also observed that the natural frequency values considering the SLE have a trend of decreasing markedly in general, and the influence of SLE on higher-order frequency is more significant than on the lower one under the boundary condition of cantilever supported, while a contrary effect under the boundary condition of simple supported. |
Copyright: | © 2019 Zuolong Luo et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.49 MB
- About this
data sheet - Reference-ID
10300232 - Published on:
14/02/2019 - Last updated on:
02/06/2021