0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Neural Network Trained by Multi-Tracker Optimization Algorithm Applied to Energy Performance Estimation of Residential Buildings

Author(s): ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 13
Page(s): 1167
DOI: 10.3390/buildings13051167
Abstract:

Energy performance analysis in buildings is becoming more and more highlighted, due to the increasing trend of energy consumption in the building sector. Many studies have declared the great potential of soft computing for this analysis. A particular methodology in this sense is employing hybrid machine learning that copes with the drawbacks of single methods. In this work, an optimized version of a popular machine learning model, namely feed-forward neural network (FFNN) is used for simultaneously predicting annual thermal energy demand (ATED) and annual weighted average discomfort degree-hours (WADDH) by analyzing eleven input factors that represent the building circumstances. The optimization task is carried out by a multi-tracker optimization algorithm (MTOA) which is a powerful metaheuristic algorithm. Moreover, three benchmark algorithms including the slime mould algorithm (SMA), seeker optimization algorithm (SOA), and vortex search algorithm (VSA) perform the same task for comparison purposes. The accuracy of the models is assessed using error and correlation indicators. Based on the results, the MTOA (with root mean square errors 2.48 and 5.88, along with Pearson correlation coefficients 0.995 and 0.998 for the ATED and WADHH, respectively) outperformed the benchmark techniques in learning the energy behavior of the building. This algorithm could optimize 100 internal variables of the FFNN and acquire the trend of ATED and WADHH with excellent accuracy. Despite different rankings of the four algorithms in the prediction phase, the MTOA (with root mean square errors 9.84 and 95.96, along with Pearson correlation coefficients 0.972 and 0.997 for the ATED and WADHH, respectively) was still among the best, and altogether, the hybrid of FFNN-MTOA is recommended for promising applications of building energy analysis in real-world projects.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728370
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine