Nearby Real-Time Earthquake Simulation on an Urban Scale Based on Structural Monitoring
Author(s): |
Xiandong Kang
Hongyu Chen Guang Zhao Xuchuan Lin Lifu Zheng Yanan Chen Qixuan Liu Zihong Zhao Xianan Chen Fei Wang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 22 October 2024, n. 11, v. 14 |
Page(s): | 3574 |
DOI: | 10.3390/buildings14113574 |
Abstract: |
The real-time input of ground motions can effectively assess earthquake disasters in building structures. In this study, we proposed a nearby real-time simulation method that can be applied to assess regional earthquake disasters using structural monitoring recordings based on an urban earthquake simulation system. Real-time accelerations recorded during the 5.1 magnitude Tangshan earthquake were used to update and modify the computing models. El Centro waves were calibrated to 400 cm/s2 for structural seismic resilience analyses. The results indicated that approximately 70% of the structural functions were lost during the rare earthquake. Regional numerical models of 216 buildings were constructed and timeously updated using a geographic information system and measured data. The inputting ground motions recorded in the 5.1 magnitude Tangshan earthquake and typical El Centro waves were selected to analyze the structural seismic response, in which the damage indexes were computed, and the damage predictions of the regional 216 buildings were also simulated in different levels of earthquakes by being combined with the simplified principles of structural damage estimation. Finally, the evaluation results were visualized in three dimensions using ParaView software. The simulated results of earthquake disasters at an urban scale will promote the prediction abilities of local earthquake administration agencies and have considerable potential to provide essential information for emergency responses and regional disaster mitigation. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.27 MB
- About this
data sheet - Reference-ID
10810298 - Published on:
17/01/2025 - Last updated on:
25/01/2025