0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mutual Activation Mechanism of Cement–GGBS–Steel Slag Ternary System Excited by Sodium Sulfate

Author(s):






Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 14
Page(s): 631
DOI: 10.3390/buildings14030631
Abstract:

To promote the large-scale recycling of solid waste, the hydration characteristics of blended cement with different amounts of GGBS (ground granulated blast-furnace slag) and SS (steel slag) were investigated. The optimum blending amounts of GGBS and SS in cement were 40% and 10% by mass, and the optimum dosage of Na2SO4 in the C50-S40-SS10 (50 wt.% cement–40 wt.% slag–10 wt.% steel slag) system was 2 wt.%. The flexural and compressive strengths of the C50-S40-SS10 system after adding 2 wt.% Na2SO4 are 57.95% and 9.28% higher than that of pure cement at 28 d. XRD, FT-IR and Ca(OH)2 content analysis were chosen to investigate the hydration products of pure cement and blended cement. The results show that GGBS enhanced the hydration of both cement and SS. And GGBS contributed to the generation of calcium silicoaluminate hydrate (C–A–S–H) in the blended cement system. The addition of Na2SO4 promoted the hydration reaction and contributed to the generation of ettringite (AFt) in the ternary system. The hydration heat evolution results showed that GGBS and SS can reduce the hydration heat of cement. Na2SO4 had similar effects and delayed the time of AFt conversion to monosulfide calcium sulphoaluminate (AFm). A mutual activation mechanism of cement–GGBS–SS ternary system mixed with Na2SO4 was proposed in this study.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773880
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine