0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Multiscale Finite Element Modeling of the Effect of Macro-Encapsulated Phase-Change Materials on the Thermal Performance of Hydronic Floor Heating Systems

Author(s): ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 14
Page(s): 644
DOI: 10.3390/buildings14030644
Abstract:

Phase-change materials (PCMs) are commonly employed in building service equipment to regulate indoor temperatures and reduce energy consumption. This study conducted multi-scale finite element modeling to analyze the steady-state and dynamic thermal behavior of a hydronic radiant floor heating system integrated with macro-encapsulated PCMs. It predicted performance values for hydronic floor heating with and without macro-encapsulated PCMs. The study assessed the impact of the PCM volume fraction, heating water temperature, capsule thermal conductivity, and shape on the thermal performance of hydronic floor heating through various finite element models. The predictive capability of the finite element model was validated using experimental data, showing good agreement. Although the inclusion of PCMs lowered the floor temperature, it improved temperature distribution and retained heat when the system was inactive. The PCM volume fraction significantly influenced the performance of the hydronic floor. However, the shape of the macro-encapsulated PCM and thermal conductivity of the shell had minimal effects in the studied case. For instance, increasing the thermal conductivity of the shell of the PCM capsule fifty times from 0.3 to 15 W m−1 K−1 resulted in an increase in surface temperature by 1.2 °C.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773846
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine