Multifunctional composite structures with embedded conductive yarns for shock load monitoring and failure detection
Author(s): |
Birendra Chaudhary
Helio Matos Sumanta Das Jim Owens |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Smart Materials and Structures, 2 February 2024, n. 3, v. 33 |
Page(s): | 037001 |
DOI: | 10.1088/1361-665x/ad1e8c |
Abstract: |
This study evaluates the performance of composite structures with embedded conductive yarns during shock loads to create a multifunctional system for immediate failure detection. The scalable sensing yarns were made by braiding Kevlar fibers with Nitinol fibers and then integrating them into a carbon/epoxy prepreg. The multifunctional structure was subjected to a Mach 2 air blast load using a shock tube apparatus. The embedded sensor yarns were used to record their electrical performance, while Digital Image Correlation captured full-field displacements, velocities, and strains. In addition, pressure transducers measured shock event pressures. The results revealed that through-thickness failure of the laminated composite occurred at approximately 2.5% strain, which was visually observable. However, the embedded sensor exhibited out-of-range electrical measurements at around 1.5% strain, even though no visible structural damage was present. This demonstrates the embedded sensing yarns’ ability to detect delamination-type failures by responding to interlaminate damage, highlighting their advantages over conventional external sensors. Similarly, the gauge factor for the fiber system was determined to be 1.89 ± 0.07. This multifunctional system shows great potential for enhancing composite structure safety and performance in high-performance aerospace applications and offering real-time structural health assessment. |
- About this
data sheet - Reference-ID
10758158 - Published on:
15/03/2024 - Last updated on:
15/03/2024