0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Multidimensional Seismic Fragility Study of Intake Towers Based on Incremental Dynamic Analysis

Author(s):
ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 14
Page(s): 2943
DOI: 10.3390/buildings14092943
Abstract:

Assessing the fragility of intake towers using a single damage index does not allow for accurate evaluation of the potential for structural damage under seismic conditions. In this study, based on the probabilistic seismic demand analysis method, the effects of ground motion intensity on maximum displacement, local damage index, and global damage index are considered, and the seismic fragility of an intake tower structure is analyzed. First, 10 natural ground motion records were selected from the ground motion database (PEER) and 2 artificial seismic waves were synthesized. These seismic waves were amplitude-modulated for incremental dynamic analysis (IDA). The trends of the IDA curves were analyzed to divide the performance levels of the intake tower structure. Furthermore, a two-dimensional fragility curve for the intake tower structure was plotted in this study. The maximum displacement in the direction of parallel flow and the damage index were taken into account in the two-dimensional fragility curve. The results show that, under the designed seismic acceleration, the two-dimensional fragility curve for the intake tower structure was lower than the one-dimensional curve. This indicates that the seismic design based on the one-dimensional performance index was unstable. This provides a theoretical reference for seismic optimization design and the strengthening of intake towers. Therefore, it is recommended to use multidimensional fragility analysis to study the seismic performance of intake tower structures in seismic design.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10799786
  • Published on:
    23/09/2024
  • Last updated on:
    23/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine