Multi-Span Composite Timber Beams with Rational Steel Reinforcements
Author(s): |
Mikhail Lukin
Evgeny Prusov Svetlana Roshchina Maria Karelina Nikolay Vatin |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 20 January 2021, n. 2, v. 11 |
Page(s): | 46 |
DOI: | 10.3390/buildings11020046 |
Abstract: |
Wooden multi-span beams with steel reinforcement were studied experimentally on a stationary stand using an eight-point loading scheme that simulated a load uniformly distributed over the beam span. The studies were carried out on beams with a span of 4.8 m with a cross-sectional area of 40 mm × 80 mm, reinforced in the stretched zones of the cross-section with rods made of hot-rolled steel reinforcement of A400 class. The rational zones for the location of reinforcements in the tensioned and compressed zones of the beams were determined. The rational placements of reinforcement in the support and span zones was based on the numerical simulation of the volumetric stress state calculated using the finite element method. It was experimentally confirmed that the failure of wood composite beams had a plastic nature and occurred only along normal sections. This excluded the possibility of brittle fracture from shear stresses and ensured the operational reliability of structures as a whole. It was shown that the proposed rational reinforcement of wooden beams increased their bearing capacity by 175% and reduced bearing deformability by 85%. The results obtained indicated high efficiency of the application of the developed method of reinforcement in beams of roofs and floors of buildings. |
Copyright: | © 2021 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.49 MB
- About this
data sheet - Reference-ID
10560754 - Published on:
03/02/2021 - Last updated on:
02/06/2021