0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Multi-Response Optimization on Hydrated Calcium Aluminate Rich Ternary Binders Using Taguchi Design of Experiments and Principal Component Analysis

Author(s): ORCID

ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2494
DOI: 10.3390/buildings13102494
Abstract:

This study investigates the influence of various factors on the performance of ternary binders, utilizing statistical approaches. The research focuses on the influence of varying compositions of Portland Cement-Calcium Aluminate Cement-Calcium Sulphate (PC-CAC-CŜ), types and amounts of mineral powders, and chemical admixtures in ternary binders. Using the Taguchi design, the study required a limited number of experimental trials, utilizing a standard orthogonal array of seven factors across three levels. These factors encompassed binder composition (C1-C2-C3), mineral powder types (limestone, quartz, slag), replacement ratio (0%, 25%, 50%), retarder (0%, 0.1%, 0.2%), superplasticizer, viscosity modifying agent (stabilizer) and accelerator (0%, 0.05%, 0.1%). Measurements on hydration kinetics, dimensional stability, compressive strength, and microstructural analyses like X-ray diffraction were conducted. Principal Component Analysis (PCA) was employed to interpret the continuous data derived from heat of hydration curves, length change curves and X-ray diffraction (XRD) patterns. Results indicated that retarder quantity and binder type significantly impacted paste workability. Higher powder content led to reduced strength, whereas increased accelerator improved strength. A strong correlation was observed between accelerator content and the dimensional stability. The primary hydration product’s formation was predominantly influenced by the PC-CAC-CŜ ratio, accelerator, and cement substitutions.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744312
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine