MODI: A Structured Development Process of Mode-Based Control Algorithms in the Early Design Stage of Building Energy Systems
Author(s): |
Xiaoye Cai
Thomas Schild Alexander Kümpel Dirk Müller |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 14 February 2023, n. 2, v. 13 |
Page(s): | 267 |
DOI: | 10.3390/buildings13020267 |
Abstract: |
The growing share of renewable energy sources in building energy systems leads to more complex energy conversion and distribution systems. The current process of developing appropriate control functions for energy systems is insufficient and consequently error-prone. Regarding this problem, a new method is expected to systematically develop appropriate control functions for buildings and reduce design errors in this process. This paper introduces the MODI method, aiming at a structured development process of mode-based control algorithms to reduce errors in the early design stages of buildings. A complete framework and a standardized application process of the MODI method will be established to systematically design mode-based control algorithms described through signal-interpreted Petri nets. Furthermore, we performed a simulation-assisted evaluation approach to test and improve the performance of the control algorithms generated by MODI. In a case study, we applied MODI to develop a mode-based control strategy for an energy system containing heating and cooling supply networks. The desired control strategy was tested and tuned in a simulation phase. Compared to a reference control, the mode-based control algorithm shows an improvement in system efficiency by 4% in winter and 8% during the transitional season phase. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.92 MB
- About this
data sheet - Reference-ID
10712049 - Published on:
21/03/2023 - Last updated on:
10/05/2023