0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Modeling of Damping Characteristics of Rubber Geopolymer Concrete Based on Finite Element Simulation

Author(s): ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 12
Page(s): 2142
DOI: 10.3390/buildings12122142
Abstract:

The stacking of waste rubber tires has led to serious environmental pollution. As an attempt to reduce pollution, rubber tires have recently been ground into rubber particles and incorporated into the geopolymer concrete to enhance the damping characteristics of concrete. Thus, we designed this study to quantify the effect of rubber particles on improving the damping performance of geopolymer concrete. The free vibration simulation of a rubber geopolymer concrete cantilever beam at four different rubber replacement volume fractions under five different damage displacements was performed on the ABAQUS platform. The damping loss factor, energy consumption, and modal shape of the cantilever beams under different damage displacements, as well as different rubber replacement volume fractions, were analyzed. The results showed that rubber particles significantly enhanced the damping characteristics of geopolymer concrete, and a certain amount of rubber particles could enhance the total energy consumption of concrete. The damping loss factor of geopolymer concrete was not closely related to its modal shape but mainly related to damage displacement and rubber particle replacement volume fraction. Altogether, these findings provide some technical references for the vibration resistance design of rubber geopolymer concrete.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10700272
  • Published on:
    11/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine