0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Modeling Deep Neural Networks to Learn Maintenance and Repair Costs of Educational Facilities

Author(s):
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 11
Page(s): 165
DOI: 10.3390/buildings11040165
Abstract:

Educational facilities hold a higher degree of uncertainty in predicting maintenance and repair costs than other types of facilities. Moreover, achieving accurate and reliable maintenance and repair costs is essential, yet very little is known about a holistic approach to learning them by incorporating multi-contextual factors that affect maintenance and repair costs. This study fills this knowledge gap by modeling and validating deep neural networks to efficiently and accurately learn maintenance and repair costs, drawing on 1213 high-confidence data points. The developed model learns and generalizes claim payout records on the maintenance and repair costs from sets of facility asset information, geographic profiles, natural hazard records, and other causes of financial losses. The robustness of the developed model was tested and validated by measuring the root mean square error and mean absolute error values. This study attempted to propose an analytical modeling framework that can accurately learn various factors, significantly affecting the maintenance and repair costs of educational facilities. The proposed approach can contribute to the existing body of knowledge, serving as a reference for the facilities management of other functional types of facilities.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10602586
  • Published on:
    17/04/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine