0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Modeling and experimental validation of thin, tightly rolled dielectric elastomer actuators

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 1, v. 31
Page(s): 015008
DOI: 10.1088/1361-665x/ac34be
Abstract:

Due to their large deformation, high energy density, and high compliance, dielectric elastomer actuators (DEAs) have found a number of applications in several areas of mechatronics and robotics. Among the many types of DEAs proposed in the literature, rolled DEAs (RDEAs) represent one of the most popular configurations. RDEAs can be effectively used as compact muscle-like actuators for soft robots, since they allow eliminating the need for external motors or compressors while providing at the same time a flexible and lightweight structure with self-sensing capabilities. To effectively design and control complex RDEA-driven systems and robots, accurate and numerically efficient mathematical models need to be developed. In this work, we propose a novel lumped-parameter model for silicone-based, thin and tightly rolled RDEAs. The model is grounded on a free-energy approach, and permits to describe the electro-mechanically coupled response of the transducer with a set of nonlinear ordinary differential equations. After deriving the constitutive relationships, the model is validated by means of an extensive experimental campaign, conducted on three RDEA specimens having different geometries. It is shown how the developed model permits to accurately predict the effects of several parameters (external load, applied voltage, actuator geometry) on the RDEA electro-mechanical response, while maintaining an overall simple mathematical structure.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ac34be.
  • About this
    data sheet
  • Reference-ID
    10636316
  • Published on:
    30/11/2021
  • Last updated on:
    30/11/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine