0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Model Test Study on the Vertical Uplift Bearing Characteristics of Soil Continuous Solidified Pile Group Foundations

Author(s): ORCID










Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 14
Page(s): 849
DOI: 10.3390/buildings14030849
Abstract:

To solve the problem of the high bearing capacity of structures in deep and weak soil layers, we invented a new type of pile group foundation in which the soil was continuously solidified between piles (hereinafter referred to as the SCS pile group foundation). Considering the two key factors of pile spacing and CSM depth, the antipulling load characteristics of SCS pile group foundations in dry sand were studied via indoor half-model tests and numerical simulations. The results showed that the ultimate uplift capacity of the SCS pile group foundation with a 2D–6D CSM depth was about 2–3 times that of the traditional pile group. When the stiffness of the CSM is so large that its effect can be ignored, the greater the pile spacing is, the greater the ultimate uplift capacity is. For the same pile spacing, the greater the depth of the CSM is, the greater the ultimate uplift bearing capacity is. When the CSM depth is greater than 10D, the uplift effect of the CSM can be effectively exerted, and the antipulling advantage of the SCS pile group foundation can be fully utilized. This study provided a reference for the antipulling design of SCS pile foundations.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773964
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine