0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Modal Parameter Identification Based on Hilbert Vibration Decomposition in Vibration Stability of Bridge Structures

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-9
DOI: 10.1155/2021/6688686
Abstract:

Modal parameters are important parameters for the dynamic response analysis of structures. An output-only modal parameter identification technique based on Hilbert Vibration Decomposition (HVD) is developed herein for structural modal parameter identification to (1) obtain the Free Decay Response (FDR) of a structure through free vibration or ambient vibration tests, (2) decompose the FDR into modal responses using HVD, and (3) calculate the instantaneous frequencies and instantaneous damping ratios of the modal responses to obtain the modal frequencies and modal damping ratios. A series of numerical examples are examined to demonstrate the efficiency and highlight the superiorities of the proposed method relative to the empirical model decomposition-based (EMD-based) method. The robustness of the proposed method to noises is also investigated and proved to be positive effect. The proposed method is proved to be efficient in modal parameter identification for both linear and nonlinear systems, with better frequency resolution, and it can be applied to systems with closely spaced modes and low-energy mode.

Copyright: © 2021 Yingzhi Xia et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10578364
  • Published on:
    02/03/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine