0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Minimum reinforcement for crack width control in restrained concrete members considering the deformation compatibility

Author(s):

Medium: journal article
Language(s): English
Published in: Structural Concrete, , n. 2, v. 16
Page(s): 221-232
DOI: 10.1002/suco.201400058
Abstract:

The current design code EC2 [1] regulates the minimum reinforcement for crack width control in restrained concrete members by taking up the cracking force of the cross section. Although this concept gives straightforward results, its consistent application can lead to high reinforcement amounts with increasing member thickness. The reason is the simplifying assumption of an infinite member length neglecting the deformation compatibility.
The cracking force approach was therefore empirically modified to reflect practical experience, see [2]. However, the main modification of a limited tensile strength seems particularly dubious, as the primarily affected thick members have already a strong developed tensile strength before any risk of cracking occurs at all.
Finally, this circumstance leaves the structural designer with the dilemma of being either uneconomic or having no mechanical proof in a possible case of damage.
However, the mechanically consistent estimation of the minimum reinforcement for crack width control can be achieved by considering the deformation compatibility of the restrained member, see [3]. With the introduction of [4], this deformation-based design concept became state of the art for mass concrete members of hydraulic structures.
This contribution presents the general application of the deformation-based design concept due the findings of [5]. The reliability and the practicability of this approach will then be illustrated by the deformation-based minimum reinforcement design of a trough structure.

Keywords:
crack width control hardening concrete restraint stresses deformation-based reinforcement design deformation compatibility minimum reinforcement
Available from: Refer to publisher
Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1002/suco.201400058.
  • About this
    data sheet
  • Reference-ID
    10071956
  • Published on:
    03/07/2015
  • Last updated on:
    03/07/2015
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine