0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Meso-Experimental Study on Tensile Characteristics of Clay

Author(s):
ORCID



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-16
DOI: 10.1155/2021/8875903
Abstract:

This paper presents an experimental study on the meso-structure change of clay using an innovative testing system. It aims to evaluate the tensile characteristics of clay. The testing system designed in this paper includes a tensile loading device, an image acquisition device, and an image processing program, which can collect and process the meso-structural images of the soil sample and predict the location of tensile fracture zone with a small preloading. The tests were conducted with three different observation zones, including the tensile fracture zone (Zone 1), the adjacent area of tensile fracture zone (Zone 2), and the areas away from the tensile fracture zone (Zone 3). The results show that the development of cracks is continuous but not linear until tensile failure in Zone 1, and the cracks emerge but stop developing in Zone 2 with the penetration of the cracks in Zone 1, while there is only an overall deviation without any cracks in Zone 3. The variety of mesostructural quantitative parameters in Zone 1 can be divided into three stages: stable stage, rapid change stage, and failure stage. The changes of parameters in Zone 2 show a similar law with those in Zone 1, but the variation is smaller due to the cessation of cracks. The parameters in Zone 3 essentially remain unchanged throughout the whole procedure. According to the test results, the whole stretching process of clay can be divided into the sprouting, the development, and the penetration of cracks.

Copyright: © 2021 Yi Zhou et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10602088
  • Published on:
    17/04/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine