0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Mercerization Process and Its Impact on Rice Straw Surface Topography

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 13
Page(s): 1573
DOI: 10.3390/buildings13071573
Abstract:

The present study shows the mercerization process (NaOH) and its effect on the physicochemical characteristics of rice straw. In total, 12 samples were analyzed, 3 as a comparative basis and 9 that were exposed to different concentrations of NaOH (1%, 2%, and 3%) and times, in hours, of exposure in an alkaline environment (1 h, 2 h, and 3 h). The loss of silica and reduction in lignin and hemicellulose contents identified in the chemical characterization allowed for a visualization of the surface topography and cross-section of the treated samples, making it possible to contrast them with the three untreated samples by comparing their roughness, the appearance of their pores, and the contractions of vascular bundles in their conductive tissue. An analysis of the data showed that the results between some treatments were similar, suggesting a reduction in resources in future research. The mechanical resistance allowed for identifying that the NaOH-1%-1 h treatment obtained a better mechanical resistance in the treated samples. However, NaOH-3%-1 h, with the third lowest resistance, obtained the highest % elongation compared to the other samples. These physicochemical changes with NaOH facilitate the selection of the treatment concerning the fiber–matrix interaction and final performance of the composite material that intends to use rice straw as a reinforcing fiber.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737195
  • Published on:
    03/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine