Mechanical Properties of Tunnel Muck with Fly-Ash Geopolymer
Author(s): |
Dong Yang
Zhiqin Xi Qiang Chen Shuisheng Li |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2020, v. 2020 |
Page(s): | 1-10 |
DOI: | 10.1155/2020/7247134 |
Abstract: |
The tunnel muck has a great potential to be used as a recyclable engineering material in transit and other civil work projects instead of being deposited as construction waste. In this work, the geopolymer is generated by alkali-activated fly ashes, which act as cementitious materials to strengthen the tunnel muck. The tunnel muck has to be dehydrated, grinded, and screened before being treated by alkali-activated fly ash. The effect of the mass ratio between fly ash and tunnel muck (Mfa/Mtm), the mass ratio between Na2SiO3solution and NaOH solution (MNa2SiO3/MNaOH), the ratio between liquid and solid (Mliquid/Msolid), and molarity of NaOH on the strength of geopolymer were systematically studied by conducting the uniaxial compression experiments. The experimental results indicate that the liquid-to-solid ratio is the most important parameter to the geopolymer strength after the alkali-activated fly ash treatment. On the contrary, molarity of NaOH is less effective on the geopolymer strength. Moreover, the optimum scheme is concluded according to the experimental results as follows: the mass ratio between tunnel muck and fly ash, the mass ratio between Na2SiO3solution and NaOH solution, the ratio between liquid and solid, and molarity of NaOH are 1 : 2, 1.8, 0.18, and 10 mol/L, respectively. Meanwhile, the SEM images indicate that flocculence from the active substance in fly ash is a crucial component as the cementing material. |
Copyright: | © 2020 Dong Yang et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.92 MB
- About this
data sheet - Reference-ID
10414055 - Published on:
26/02/2020 - Last updated on:
02/06/2021