0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical Properties of Thin Surface Treatment for Pavement Maintenance

Author(s):


Medium: journal article
Language(s): English
Published in: The Baltic Journal of Road and Bridge Engineering, , n. 2, v. 14
Page(s): 136-157
DOI: 10.7250/bjrbe.2019-14.437
Abstract:

Specification tests for thin surface treatment are mainly simulated or empirical; without considering fundamental mechanical or rheological properties of the material. Thus, it is difficult to incorporate the test results into mechanical-based pavement design analysis. A series of test methods, which quantify performance-related mechanical properties of thin surface treatment employed in pavement maintenance and pavement preservation is thus needed. The objective of this study is to investigate the performance-related mechanical properties of thin surface treatment materials for pavement maintenance and preservation. The Micro-Surfacing Mat and Precast Rubber Asphalt Mat were used in this study. The Finite Element Model result indicated that the Modified Leutner Shear Test adequate to evaluate the direct shear strength of the thin surface treatment. The results show that the sensitivity loading frequency and the temperature susceptibility of the Precast Rubber Asphalt Mat were reduced by Rubber Modified Asphalt content. The Precast Rubber Asphalt Mat has greater interfacial shear strength as well as shear stiffness compared to those of Micro-Surfacing Mat. The tack coat application rate is crucial for the interfacial shear strength of Precast Rubber Asphalt Mat. This research found that shear stress and the displacement rate are positively related to the interfacial shear strength and shear stiffness. The interfacial shear strength and shear stiffness are negatively related to testing temperature. The Micro-Surfacing Mat had higher dynamic direct shear modulus, lower loading frequency sensitivity, and better rutting resistance than Precast Rubber Asphalt Mat.

Copyright: © 2019 Hery Awan Susanto, Shih-Hsien Yang, Huan-Hsun Chou
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10315215
  • Published on:
    28/06/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine