0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical Properties of SMA/PVA-ECC under Uniaxial Tensile Loading

Author(s): ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 13
Page(s): 2116
DOI: 10.3390/buildings13082116
Abstract:

Although shape memory alloy/Polyvinyl alcohol (SMA/PVA) hybrid fiber reinforced cementitious composites, (SMA/PVA-ECC) exhibit excellent crack closure and deformation recovery capabilities, however, the research on their fundamental mechanical properties is still limited. This study investigates the tensile mechanical properties of SMA/PVA-ECC materials by conducting uniaxial tensile tests, analyzing the failure behavior, stress–strain curves, and characteristic parameters of the specimens, comparing the influence of SMA fiber content and diameter, and establishing a tensile constitutive model. The results show that the residual crack width of SMA/PVA-ECC specimens significantly decreases after unloading, and SMA fiber content and diameter have a significant impact on the tensile properties of the specimens. The comprehensive tensile properties of specimens with a fiber diameter of 0.2 mm and content of 0.2% are the best, with their initial cracking strength, ultimate strength, and strain increasing by 56.4%, 23.6%, and 13.4%, respectively, compared to ECC specimens. The proposed bilinear tensile constitutive model has high accuracy. This study provides a theoretical basis for further research on SMA/PVA-ECC materials.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737642
  • Published on:
    02/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine