0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical Properties of Permeable Concrete Reinforced with Polypropylene Fibers for Different Water–Cement Ratios

Author(s):
ORCID
ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 14
Page(s): 2935
DOI: 10.3390/buildings14092935
Abstract:

Permeable concrete is a material that allows water filtration, reduces surface runoff, and maintains the natural water cycle. Previous studies have shown that its mechanical properties, particularly its compressive and flexural tensile strengths, are generally lower than those of conventional concrete, with significant variability observed among similar tests. This study investigates the compressive strength, flexural strength, and permeability of polypropylene fiber-reinforced permeable concrete specimens at two water–cement ratios (0.30 and 0.35). The mix design was conducted using the ACI 522R-10 method. Forty-eight cylinders measuring 200 mm × 100 mm were fabricated for permeability and compression tests. Additionally, 12 beams measuring 100 mm × 100 mm × 350 mm were produced and subjected to simple flexural testing in accordance with ASTM C78 guidelines. Compressive strength versus permeability and load versus deflection graphs were plotted, and the fracture energy was calculated for various deflections. The results indicate that the addition of fibers increased permeability and tensile strength but decreased compressive strength. Furthermore, an increase in the water–cement ratio led to higher compressive and flexural tensile strengths.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10799788
  • Published on:
    23/09/2024
  • Last updated on:
    25/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine