0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical properties of concrete containing Fly Ash, Rice Husk Ash and Waste Glass Powder

Author(s):


Medium: journal article
Language(s): English
Published in: Civil Engineering Journal, , n. 5, v. 4
Page(s): 1019
DOI: 10.28991/cej-0309153
Abstract:

This paper for the first time investigates the workability, compressive and tensile strength of concrete containing Fly Ash, Rice Husk Ash and Waste Glass Powder. Seventy six cube specimen (150  150  150 mm were cast with different composition of Fly Ash, Rice Husk Ash,Waste Glass Powder and steel fibers. The cubes were tested for axial compression and tensile tests. The research also investigated the effect of curing regime on the compressive and tensile strength of concrete cube specimen. The results revealed that the addition of 15 % Rice Husk Ash and 39% Fly Ash increased the workability of 25 % as compared to the controlled concrete. The sample containing 10 % Rice Husk Ash, 10% Waste Glass Powder and 39% micro silica produced worst workability as it decreased the workability up to 5 % of controlled concrete. The results for axial compressive strength shows that the addition of 15% Rice Husk Ash (RHA) and 39% of Fly Ash (FA) in concrete leads to the improvement of compressive strength by 14%. The sample containing replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP) and 39 % of micro silica (MS) in concrete leads to the improvement by 53.9 for compressive. The replacement  of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP ), 39 % of micro silica (MS) 3% steel fiber in concrete leads to the improvement by 37% for compressive strength. It was observed from the results of tensile strength that the samples containing 15% Rice Husk Ash (RHA) and 39 % of Fly Ash (FA) increased the tensile strength by 24% as compared to the controlled concrete. The sample containing replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP) and 39 % of micro silica (MS) in concrete leads to an increase of 20% as compared to the controlled ones. Also, the replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP), 39 % of micro silica (MS) 3% steel fiber increased the tensile strength by 40 % as compared to the controlled concrete sample. Finally, it was concluded that the replacement of 10% RHA, 39% micro Silica, 10% WG in concrete was found to be superior for increasing the mechanical properties of concrete.

Copyright: © 2018 Basheer Mohammed Salem Al-Ahdal, Li Bi Xiong, Rana Faisal Tufail
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10341003
  • Published on:
    14/08/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine