0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical Properties and Sulfate Freeze–Thaw Resistance of Calcium Carbonate Whisker-Reinforced Iron Ore Tailings Concrete

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 1004
DOI: 10.3390/buildings14041004
Abstract:

Iron ore tailings from iron ore mines pose environmental challenges. However, their reuse could provide significant environmental benefits. This study focused on producing clean concrete using iron ore tailings as crushed stone aggregate (IOTA) and calcium carbonate whiskers (CWs) as reinforcement. Five mixture groups were prepared: normal concrete (NAC) with natural crushed stone aggregate (NA), iron ore tailings concrete (TAC) with IOTA, and CW (10%, 20%, and 30%)-reinforced TAC (TAC-CW). Mechanical properties like the compressive strength (fcu) and splitting tensile strength (fst), as well as sulfate freeze–thaw (F-T) cycle resistance, were thoroughly investigated. Additionally, pore structure and microstructure were characterized using nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM) techniques. The results showed that IOTA’s complete replacement of NA decreased concrete mechanical properties and frost resistance, but incorporating CWs effectively compensated for these losses. Specifically, the fcu and fst of TAC-CW20 with 20% CWs increased by 23.26% and 49.6% compared to TAC and were higher than those of NAC. With increasing F-T cycles, concrete internal pore structure significantly deteriorated, and corrosive products increased significantly, which was further confirmed by SEM. TAC-CW20 significantly optimized pore structure. Overall, the successful application of iron ore tailings as eco-friendly materials enhanced concrete performance and reduced the environmental impact of construction activities.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773850
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine