0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical Properties and Loading Simulation of Unidirectional Laminated Slabs Made from Recycled Concrete with Manufactured Sand

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 14
Page(s): 674
DOI: 10.3390/buildings14030674
Abstract:

To align with the trend of the development of prefabricated buildings, this study aimed to produce unidirectional laminated slabs by using recycled concrete with manufactured sand (RCM). Additionally, performance evaluation and loading simulation analyses were conducted on these unidirectional laminated slabs. The experimental results indicate that the mechanical characteristics of RCM closely approximate those of recycled aggregate concrete (RAC), and they are all higher than the design value. Under ultimate loading conditions, the mid-span deflection of laminated slabs fabricated with RCM surpasses its RAC counterpart by 5.9%, indicating a pronounced proximity in flexural performance between RCM and RAC laminated slabs. Concurrently, ABAQUS finite element software was used to compare and simulate the performance of the unidirectional laminated slabs. The difference between the deflection generated by the actual applied ultimate load and the deflection generated by the simulated ultimate load is about 7.1%, and the simulation results are very close to the experimental results. Based on the experimental results, the practical application of RCM unidirectional laminated slabs has high value in the field of construction engineering.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773346
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine