Mechanical Performance of Patched Pavements with Different Patching Shapes Based on 2D and 3D Finite Element Simulations
Author(s): |
Shujian Wang
Han Zhang Cong Du Zijian Wang Yuan Tian Xinpeng Yao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Infrastructures, 6 March 2024, n. 3, v. 9 |
Page(s): | 61 |
DOI: | 10.3390/infrastructures9030061 |
Abstract: |
Patching is a common technology used in repairing asphalt-pavement potholes. Due to the differences in material properties between patched- and unpatched-asphalt mixtures, significant strain and stress concentrations could be induced; thus, further cracks and interfacial debonding distress could be caused. As a remedy, the strain and stress concentrations can be alleviated by utilizing optimum patching shapes. Therefore, this paper employed finite element methods (FEM) to deeply analyze the mechanical performance of patched-asphalt pavements embedded with different patching shapes. Three patching shapes, these being rectangular, stair, and trapezoid, were considered for use in pavement pothole repairs based on two- and three-dimensional finite element models. In the two-dimensional models, Top-Down and Bottom-Up crack propagations were simulated to assess the anti-damage performance of the patched pavements with different patching shapes. In addition, the thermal stress behaviors within patched-asphalt pavements were simulated using the two-dimensional model to analyze the performance of the patched pavements during the cooling process in construction. In addition, interface-debonding performance was simulated for the patched-asphalt pavements using three-dimensional models. In light of the simulation results, engineers are expected to better understand the mechanism within patched pavements and to improve the quality of the pavement patching. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
7.97 MB
- About this
data sheet - Reference-ID
10776412 - Published on:
29/04/2024 - Last updated on:
05/06/2024