0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical, Chloride Permeation, and Freeze–Thaw Resistance of Recycled Micronized Powder Polypropylene-Fiber-Engineered Cementitious Composites

Author(s):

Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 13
Page(s): 2755
DOI: 10.3390/buildings13112755
Abstract:

Research on engineered cementitious composites was carried out using recycled micronized powder from waste construction waste as a substitute for cement. Consequently, this paper focuses on the investigation of recycled micronized powder (RMP) as the subject of study. Using RMP-PP-ECCA0 as the control group, we explored the impact of polypropylene fiber content (0.5%, 1%, 1.5%, 2%) and the substitution rate of RMP (10%, 20%, 30%, 40%) on the mechanical properties, resistance to chloride ion penetration, and freeze–thaw durability of recycled micronized powder polypropylene-fiber-engineered cementitious composites (RMP-PP-ECCs). It was found that, with the increase in RMP substitution rate and fiber content, the mechanical, chloride ion permeation, and freeze–thaw resistance of recycled micronized powder polypropylene-fiber-engineered cementitious composites showed a trend of increasing and then decreasing when the RMP substitution rate was 10%, and the fiber content was 1.5%; the compressive, tensile, chloride ion permeation, and freeze–thaw resistance of recycled micronized powder polypropylene-fiber-engineered cementitious composites were most obviously improved. Compressive strength performance increased by 18.8%, tensile strength performance increased by 80.8%, maximum tensile strain increased by 314%, and electrical flux decreased by 56.3%. Meanwhile, when the recycled micronized powder substitution rate was 10%, the fiber content was 1%, with the most obvious improvement in flexural and freeze–thaw cycle resistance, compared with the control group 28 d flexural strength increased by 22%, after 150 freeze–thaw cycles, the mass-loss rate was reduced by 26%, and the relative dynamic elastic modulus was improved by 4%. In addition, the chemical composition of the regenerated microfractions and the defects in the matrix of the fracture surface of the tensile specimens, the distribution of polypropylene fibers, the surface morphology, and the failure mode were analyzed by X-ray diffraction and scanning electron microscopy.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753754
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine