0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical Behavior of Fully Grouted Rock Bolts in Hydraulic Tunnels Subjected to Elevated Ground Temperatures

Author(s):

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 13
Page(s): 1280
DOI: 10.3390/buildings13051280
Abstract:

In this study, the mechanical behavior of fully grouted rock bolts in hydraulic tunnels subjected to elevated ground temperatures was investigated. A differential equation for axial displacement of the rock bolt was formulated, which considers the force equilibrium of infinitesimal bolt segments and the stress transfer mechanism at the anchor–rock interface. The distribution functions for axial stress within the bolt and the interfacial shear stress were obtained by solving the differential equation, which incorporated the displacement of the surrounding rock mass as a parameter. This study showed that the effectiveness of the bolt–shotcrete support system decreases over time, considering the displacement relaxation rate of the surrounding rock mass. The mechanical model’s variation laws at 20 °C, 50 °C, and 80 °C were summarized by integrating the thermal deformation equation for material parameters, and the numerical simulation results were compared and analyzed. The findings revealed that the bond strength between the rock bolt and the rock mass diminishes as the temperature of the surrounding rock increases, leading to a reduction of interfacial shear stress at both extremities of the bolt. Moreover, the maximum axial force within the bolt escalates as the neutral point migrates farther from the tunnel wall.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728361
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine