Mechanical Behavior and Energy Evolution of Sandstone considering Slenderness Ratio Effect
Author(s): |
Bibo Dai
Xingdong Zhao Shuwen Zhang Qian Kang Zhonghua Zhu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2020, v. 2020 |
Page(s): | 1-13 |
DOI: | 10.1155/2020/8881416 |
Abstract: |
To study the influence of slenderness ratio effect on the mechanical behavior, acoustic emission properties, and energy evolution of sandstone, the uniaxial compression tests coupled with acoustic emission technology are carried out at different slenderness ratios D (0.5, 1.0, 1.5, 2.0, 3.0). The results show that a logarithmic function relationship is observed between the peak strength, the peak strain, and the elastic modulus with slenderness ratio. The failure patterns of the tested sandstone varied significantly with the increasing slenderness ratio. When the slenderness ratio, D, is lower than 1.5, complex failures and multiple shear planes are formed, while simple failures and single shear planes are generated at D larger than 1.5. Besides, the AE ringing counts are more obvious with a higher slenderness ratio, D, at the initial compression stage due to the greater body volume and more defects in the sandstone. The energy evolution curves and energy ratio distribution curves can be divided into four stages, corresponding to the stress-strain curves. |
Copyright: | © Bibo Dai et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.98 MB
- About this
data sheet - Reference-ID
10536024 - Published on:
01/01/2021 - Last updated on:
02/06/2021