0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Mechanical and Environmental Performance of Fiber-Reinforced Polymers in Concrete Structures: Opportunities, Challenges and Future Directions

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 12
Page(s): 1417
DOI: 10.3390/buildings12091417
Abstract:

The construction sector is well known for its critical environmental impact resulting from the consumed amounts of raw materials and the tremendous emissions of greenhouse gases. Therefore, scientists need to promote and study the environmental implications of using alternative solutions such as fiber-reinforced polymers (FRP) throughout their service life. FRPs have gained increasing popularity in the last few years due to their durability, high corrosion resistance, light weight and high strength. Life cycle assessment is considered one of the most important methods to investigate the environmental impacts of the FRP. The aim of this paper is to present an overview of fiber-reinforced polymer composites in concrete structures with an investigation focusing on their environmental and mechanical properties in civil engineering structures. The main focus is set on the properties of fiber-reinforced polymers, their use as a strengthening technique in concrete structural members and their environmental impact using the life cycle assessment method. The reported results from the literature reveal that utilizing FRP composites in structural members instead of traditional materials improves their strength and stiffness and reduces environmental impacts.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692678
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine