0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical and Durability Studies on Ficus exasperata Leaf Ash Concrete

Author(s):


ORCID


ORCID
ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-10
DOI: 10.1155/2022/4038344
Abstract:

This paper reports the effect of snake grass (SG) fibers in Ficus exasperata Leaf Ash (FELA) concrete. Snake grass fibers of percentages 0.5, 1, 1.5, and 2 were used in this investigation. Tests of compressive strength, split tensile strength, and flexural strength and durability studies of salt resistance, sulphate resistance, and impact energy resistance were determined, and the test results are discussed in detail. Test results revealed that FELA ash of 15% replacement in cement showed remarkable binding property. Moreover, incorporation of snake grass fiber in concrete improves the strength, postcracking resistance, and energy absorption. It is also observed that 1.5% snake grass fiber incorporation in concrete exhibited better strength properties and energy absorption property than 0.5% and 1%. Also, beyond 1.5%, there is significant reduction in workability property. Regardless of durability property, the mix containing 1.5% snake grass fiber has shown better resistance against durability when compared with other mixes. It is also observed that penetration of chloride and sulphate ions made slight deterioration at sharp edges. Moreover, test results revealed that applications of FELA concrete with snake grass fiber can be effectively expanded in the construction industry.

Copyright: © 2022 K. S. Elango et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10657382
  • Published on:
    17/02/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine