0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Magnetic Signal Characteristics in Critical Yield State of Steel Box Girder Based on Metal Magnetic Memory Inspection

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 12
Page(s): 1835
DOI: 10.3390/buildings12111835
Abstract:

Metal magnetic memory testing (MMMT) is a nondestructive testing technique that can detect early signs of damage in components. Many scholars have studied the effect of uniaxial stress on the self-magnetic-leakage field (SMLF)’s strength. Nevertheless, there is still insufficient research on the combined action of bending and shear. We studied the law of distribution of the magnetic signal, ΔHSF(y), at different stress parts of a steel box girder and the quantitative relationship between the magnetic characteristic parameters and the external load. The results showed that the MMMT could accurately detect the early stress concentration zone (SCZ) and predict the final buckling zone of steel box girders. It could be judged that the corresponding parts of the steel box girder had entered the elastic-plastic working stage by the reverse change of the  ΔHSF(y)-F and |HSF(y)|a -F curve trends, this feature could be used as an early warning sign before the steel box girder was deformed or destroyed. The fitted |HSF(y)|ave -F linear expression could be used as the expression between the magnetic signal and the shear capacity. All the evaluation methods were expected to provide a basis for effectively evaluating the stress state of steel box girders with the MMMT method.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10699784
  • Published on:
    10/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine