Machine Learning (ML) Methods in Assessing the Intensity of Damage Caused by High-Energy Mining Tremors in Traditional Development of LGOM Mining Area
Author(s): |
Michał Witkowski
|
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Budownictwo i Architektura, 30 March 2022, n. 1, v. 21 |
Page(s): | 5-17 |
DOI: | 10.35784/bud-arch.2679 |
Abstract: |
The paper presents a comparative analysis of Machine Learning (ML) research methods allowing to assess the risk of mining damage occurring in traditional masonry buildings located in the mining area of Legnica-Głogów Copper District (LGOM) as a result of intense mining tremors. The database of reports on damage that occurred after the tremors of 20 February 2002, 16 May 2004 and 21 May 2006 formed the basis for the analysis. Based on these data, classification models were created using the Probabilistic Neural Network (PNN) and the Support Vector Machine (SVM) method. The results of previous research studies allowed to include structural and geometric features of buildings,as well as protective measures against mining tremors in the model. The probabilistic notation of the model makes it possible to effectively assess the probability of damage in the analysis of large groups of building structures located in the area of paraseismic impacts. The results of the conducted analyses confirm the thesis that the proposed methodology may allow to estimate, with the appropriate probability, the financial outlays that the mining plant should secure for the repair of the expected damage to the traditional development of the LGOM mining area. |
Copyright: | © 2022 Michał Witkowski, |
License: | This creative work has been published under the Creative Commons Attribution-ShareAlike 4.0 International (CC-BY-SA 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given and the same license is used as for the original work (the above link must be included). Any alterations to the original must also be mentioned. |
1.92 MB
- About this
data sheet - Reference-ID
10664891 - Published on:
09/05/2022 - Last updated on:
21/03/2023