0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Longitudinal Seismic Behavior of a Single-Tower Cable-Stayed Bridge Subjected to Near-Field Earthquakes

Author(s):
ORCID
Medium: journal article
Language(s): English
Published in: Shock and Vibration, , v. 2017
Page(s): 1-16
DOI: 10.1155/2017/1675982
Abstract:

Cable-stayed bridges are quite sensitive to large amplitude oscillations from earthquakes and seismic damage was observed for Shipshaw Bridge and Chi-Lu Bridge during past earthquakes. In order to investigate seismic damage of cable-stayed bridges, a 1 : 20 scale model of a single-tower cable-stayed bridge with A-shaped tower was designed, constructed, and tested on shake tables at Tongji University, China. One typical near-field ground motion was used to excite the model from low to high intensity. Test result showed that severe structural damage occurred at the tower of the model including parallel concrete cracks from bottom to nearly half height of the tower, concrete spalling, and exposed bars at top tower 0.2 m above the section where two skewed legs intersect. Posttest analysis was conducted and compared with test results. It is revealed that the numerical model was able to simulate the seismic damage of the test model by modeling nonlinearity of different components for cable-stayed bridges, namely, the tower, bents, superstructure, cables, and bearings. Numerical analysis also revealed that cable relaxation, which was detected during the test, had limited influence on the overall seismic response of the bridge with maximum error of 12%.

Copyright: © 2017 J. Yi, J. Li
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10676306
  • Published on:
    28/05/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine