0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Long-Term Behaviour of Padded Concrete Sleepers on Reduced Ballast Bed Thickness

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 10, v. 7
Page(s): 132
DOI: 10.3390/infrastructures7100132
Abstract:

The positive effects of under sleeper pads have already been proven by track and laboratory tests worldwide. In Austria, padded concrete sleepers reduce track deterioration by 50 percent and have therefore been used as standard components since 2010. As the pads increase material costs, many infrastructure managers have discussed the idea of covering costs by reducing the ballast bed thickness. Technically, this approach (less ballast) is feasible, as the pads increase the track elasticity and protect the ballast. Further, pads lead to higher rail deflection and distribution of the load to more sleepers, and the stresses in sleepers are therefore relieved. Here, we compared Austrian test sections with padded and unpadded concrete sleepers and with a difference in the ballast bed thickness: standard thickness of 30 cm against 20 cm below the sleeper. Fractal analyses and standard deviations of the track’s longitudinal level provided information about the sections’ long-term track behaviour over 20 years. We found that the standard solution with 30 cm ballast performed better in the long term compared to 20 cm. Additionally, the test section with padded sleepers on a reduced ballast bed thickness showed a lower maintenance demand than the unpadded concrete sleeper track on a 30 cm ballast bed.

Copyright: © 2022 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10722812
  • Published on:
    22/04/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine