0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Long short_term memory (LSTM) neural networks for predicting dynamic responses and application in piezoelectric energy harvesting

Author(s): ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 7, v. 33
Page(s): 075005
DOI: 10.1088/1361-665x/ad508e
Abstract:

Long Short-Time Memory (LSTM) deep neural networks are capable of learning order dependence in sequence problems and capturing long-term, non-linear temporal dependencies between the input and out of a system. With the long-term vision to model dynamical systems to which analytical or numerical methods are impossible or difficult to apply, this paper presents a study of modeling system dynamics and predicting responses using the LSTM networks, which have demonstrated excellent capability in predicting single-mode responses in a prior study. However, the LSTM network exhibits difficulties in modeling and predicting multi-mode responses accurately. To resolve the multi-mode issue, this paper presents an approach that obtains an equivalent network consisting of a set of sub-networks learned on isolated modes, and demonstrates its effectiveness on a simulated 2-degree-of-freedom mass-spring-damper system of nonlinear Duffing springs. The second part of the paper is focused on the application of the proposed approach in piezoelectric energy harvesting. Experiments are conducted on a harvester subjected to random base-motion excitation and exhibiting nonlinearity in its multi-mode response. Both the direct and mode-separation LSTM modeling approaches are applied to predict the output voltage given a random base-motion excitation. The mode-separation approach outperforms the direct approach significantly, and yields an excellent match between the actual and predicted responses. Specifically, for a test electrical voltage response of RMS value 0.2241 V, the difference between the actual test and predicted responses by using the mode-separation approach has an RMS value of 0.0504 V, compared to 0.1645 V obtained by using the direct LSTM approach. It is also much lower than the RMS value of 0.1835 V obtained by using the attention-based LSTM network, another comparison method. Leveraging a deep learning strategy, the validated approach opens up opportunities for accurately modeling energy harvesting systems of high complexities and/or strong nonlinearities.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ad508e.
  • About this
    data sheet
  • Reference-ID
    10783954
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine