0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Limit Analysis of Collapse Mechanisms for Tunnel Roofs Subjected to Pore Water Pressure: A Numerical Approach

Author(s): ORCID
ORCID



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-14
DOI: 10.1155/2021/3591670
Abstract:

The collapse mechanism of a circular unlined tunnel roof subjected to the pore water pressure under plane strain conditions is investigated in this article. First, the model of calculating the function expression of the detaching surface for the collapsing block is formed in the framework of the upper bound theorem of limit analysis and the extremum principle. The analytical solution of the pore water pressure around the tunnel in a two-dimensional steady seepage field is employed in the equations of the model. Then, the numerical approach based on the Runge–Kutta algorithm and traversal search method is proposed to solve the complex equations. The obtained expression of the detaching surface for the collapsing block provides the shape of the collapsing block and a theoretical basis for designing the support force for tunnels. The proposed limit analysis method and numerical approach are verified by comparing with existing theoretical solutions and the numerical simulation result, and they are suitable for deep, shallow tunnels and layered strata. Moreover, the effects of different parameters on the collapse mechanism are investigated, and qualitative results are provided.

Copyright: © Jing-jing Liu et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10609895
  • Published on:
    08/06/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine