0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Life-Cycle Seismic Reliability Analysis of a Railway Cable-Stayed Bridge Considering Material Corrosion and Degradation

Author(s): ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2492
DOI: 10.3390/buildings13102492
Abstract:

To study the life-cycle seismic reliability analysis (SRA) of cable-stayed bridges (CSBs) taking into account chloride-induced corrosion and degradation of components, an actual railway CSB with uncertainties in structural geometry and material corrosion coefficients was employed in this investigation, and time-dependent models of CSB components at different service times were studied. Based on the OpenSees batch program, we adapted a mass numerical computation to obtain time-dependent non-linear seismic response and probability density function (PDF) of response via the multiplier dimensional-reduction method (MDRM) and the maximum entropy method with fractional moments (FM-MEM). Next, the time-dependent failure possibility of every component and the association coefficient between the failure modes of different parts were acquired. In the end, the product of the conditional marginal (PCM) approach was employed to obtain the life-cycle failure possibility of the CSB system. The results showed that the system failure possibility of the CSB in a corrosive environment increases significantly with increasing servicing time.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744311
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine