Life Cycle Assessment from Cradle-to-Handover Approach to Greenhouse Gas Emissions Mitigation: Carbon Storage in Timber Buildings
Author(s): |
Giacomo Di Ruocco
Angela Gaita |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 28 June 2023, n. 7, v. 13 |
Page(s): | 1722 |
DOI: | 10.3390/buildings13071722 |
Abstract: |
The issue of environmental sustainability is increasingly topical, and one of the most impactful sectors is the construction industry. As stated in the GlobalABC reports, the building sector is the main sector responsible for GHG emissions, generating about 37% of global CO2e emissions. Already during the phases of production and construction of buildings, about 10% of global emissions are produced, while the remaining part comes from using energy for air conditioning and lighting. Reducing emissions in buildings’ pre-use phase is a crucial issue for fighting climate change. This research investigates the potential of timber construction systems due to the carbon storage property of the material. The proposed calculation methodology is structured according to the Life Cycle Assessment (LCA) approach, referring to the C2H phase (from Cradle-to-Handover), and evaluates emissions related to buildings production and construction. In order to identify the timber construction system that minimizes CO2e emissions, the method was applied within the limits of the investigation (A1–A5 phases) to two buildings built with different technologies: an X-Lam panel and a framed structured building. The results were analyzed, compared, and discussed to demonstrate that timber buildings will be the most virtuous solution in the Net Zero Carbon perspective by 2050. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.59 MB
- About this
data sheet - Reference-ID
10737392 - Published on:
03/09/2023 - Last updated on:
14/09/2023