0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Layout Optimization of Residential Buildings to Improve the Outdoor Microclimate of Neighborhoods Along an Urban Bay: A Case Study of Shantou’s Inner Bay, China

Author(s): ORCID
ORCID

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 14
Page(s): 3912
DOI: 10.3390/buildings14123912
Abstract:

In summer, the urban heat island effect causes unbearable warmth in Shantou City, especially in the urban areas along the Inner Bay with densely populated neighborhoods. An investigation of the layout patterns of 100 residential neighborhoods along Shantou’s Inner Bay was conducted, leading to the establishment of four types and nine sub-types of idealized residential neighborhood models. Their wind speed, relative humidity, and air temperature were simulated in the ENVI-met software (version No.5.0.1). The simulation results show that high-rise buildings in the front areas play a decisive role in the overall microclimate environment. Accordingly, three principal drawbacks regarding neighborhood layout for thermal climate adaptation were extracted. Furthermore, by comparing the simulation results before and after modifying the layout of high-rise buildings, three spatial strategies to strengthen the humidification and cooling effect of sea–land breezes to optimize the outdoor microclimatic environment of neighborhoods were proposed, and these strategies were subsequently verified in the Golden-Harbor neighborhood.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810486
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine