0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Latest Advances in Finite Element Modelling and Model Updating of Cable-Stayed Bridges

Author(s): ORCID
ORCID
ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 1, v. 7
Page(s): 8
DOI: 10.3390/infrastructures7010008
Abstract:

As important links in the transport infrastructure system, cable-stayed bridges are among the most popular candidates for implementing structural health monitoring (SHM) technology. The primary aim of SHM for these bridges is to ensure their structural integrity and satisfactory performance by monitoring their behaviour over time. Finite element (FE) model updating is a well-recognised approach for SHM purposes, as an accurate model serves as a baseline reference for damage detection and long-term monitoring efforts. One of the many challenges is the development of the initial FE model that can accurately reflect the dynamic characteristics and the overall behaviour of a bridge. Given the size, slenderness, use of long cables, and high levels of structural redundancy, precise initial models of long-span cable-stayed bridges are desirable to better facilitate the model updating process and to improve the accuracy of the final updated model. To date, very few studies offer in-depth discussions on the modelling approaches for cable-stayed bridges and the methods used for model updating. As such, this article presents the latest advances in finite element modelling and model updating methods that have been widely adopted for cable-stayed bridges, through a critical literature review of existing research work. An overview of current SHM research is presented first, followed by a comprehensive review of finite element modelling of cable-stayed bridges, including modelling approaches of the deck girder and cables. A general overview of model updating methods is then given before reviewing the model updating applications to cable-stayed bridges. Finally, an evaluation of all available methods and assessment for future research outlook are presented to summarise the research achievements and current limitations in this field.

Copyright: © 2022 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10722936
  • Published on:
    22/04/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine