0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Lateral Impact Response of Rubberized-Fibrous Concrete-Filled Steel Tubular Columns: Experiment and Numerical Study

Author(s):
ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1566
DOI: 10.3390/buildings12101566
Abstract:

This paper presents an experimental and numerical study on the lateral impact behavior of rubberized-fibrous concrete-filled steel tubular (CFST) columns. Four types of concrete were utilized in the experimental program in the infilled columns: normal concrete (NC), rubberized concrete (RuC), steel fiber concrete (SFC), and hybrid RuC-SFC. Twelve specimens were tested using drop-weight impact with fixed-sliding boundary conditions. Three different transverse impact energies were produced by applying two masses of the hammers dropped from two different heights. A high-speed camera was implemented to measure the mid-span deflection against time. A 3-D finite element model was presented and verified against the tested specimens and some other experimental work from the literature. Load-displacement curves, the impact force time history, impact energy absorption, and failure modes of the CFST columns under the lateral impact were fully analyzed. The present results showed that at, certain impact energies, the steel tubular suffered only from the plastic deformation, beyond which it started cracking depending on the type of filled concrete. The steel tubular filled with hybrid RuC-SFC showed the highest resistance to crack formation, followed by that filled with SFC, while those filled with NC showed the lowest resistance to crack formation. There is an agreement between the numerical and the experimental results.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10700018
  • Published on:
    11/12/2022
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine