0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Large-Strain Nonlinear Consolidation of Sand-Drained Foundations Considering Vacuum Preloading and the Variation in Radial Permeability Coefficient

Author(s): ORCID
ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 13
Page(s): 2843
DOI: 10.3390/buildings13112843
Abstract:

The vacuum preloading method effectively strengthens soft soil foundations with vertical drainage, which produces a smear effect when laying sand drains. Meanwhile, the seepage of pore water and soil deformation during consolidation exhibit nonlinear characteristics. Therefore, based on Gibson’s 1D large-strain consolidation theory, this paper developed a more generalized large-strain radical consolidation model of sand-drained soft foundations under free-strain assumptions. In this system, the double logarithmic compression permeability relationships for soft soils with large-strain properties, the variation in the radical permeability coefficient in the smear zone, and the effect of the non-Darcy flow were all included. Then, the partial differential control equations were numerically solved by the finite difference method and validated with existing radical consolidation test results and derived analytical solutions. Finally, the influences of relevant model parameters on consolidation are discussed. The analysis shows that the greater the maximum dimensionless vacuum negative pressure P0, the faster the consolidation rate of sand-drained foundations. Meanwhile, the decrease in the negative pressure transfer coefficient k1 will result in a decreasing final settlement amount. Moreover, the consolidation rate of sand-drained foundations is slower considering the non-Darcy flow, but the final settlement is unaffected.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753413
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine