0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigation on Surrounding Rock Stability Control Technology of High Stress Roadway in Steeply Dipping Coal Seam

Author(s): ORCID




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-11
DOI: 10.1155/2021/5269716
Abstract:

There are a large amount of steeply dipping coal seams deposited in China, the safe and effective extraction of which are the challenge for coal operators due to the complicated geological characteristics, in particular, when the underground roadway is excavated in the steeply dipping coal seams with limited seam distance. The Universal Distinct Element Code (UDEC) was adopted in the present research to explore the stress distribution of surrounding rock of the roadway. Based on the numerical simulation, the damage coefficient was proposed and then used to classify the roof conditions into four groups. After that, the asymmetric support technique was proposed and put into practical applications. It is indicated that the stress concentration on the floor is the main feature of the extraction of steeply dipping coal seams. Moreover, the distributions of the maximum vertical stress and horizontal stress which are much different from each other mainly attributed to the effect of the large dip angle. This research also verified the feasibility of using the asymmetric and partition support technique to maintain the integrity of the surrounding rock, as from the case study conducted at the 12032 longwall coal face of Zhongwei coal mine.

Copyright: © 2021 Honglin Liu et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10625376
  • Published on:
    26/08/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine