0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigation on Properties of Pervious Concrete Containing Co-Sintering Lightweight Aggregate from Dredged Sediment and Rice Husks

Author(s):





ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 14
Page(s): 2276
DOI: 10.3390/buildings14082276
Abstract:

The utilization of dredged sediment (DS) as a transformative material in building applications presents an ideal consumption strategy. This study endeavors to create a novel ceramsite lightweight aggregate (LWA) through the co-sintering of DS and rice husks (RHs), further integrating this LWA into the construction of pervious concrete. Results revealed that the optimum production procedure for the DS-based LWA incorporated a 21% RH addition, a sintering temperature of 1100 °C, and a sintering duration of 21 min. Notably, the optimal ceramsite LWA, denoted as SDC-H, exhibited a cylinder compressive strength of 28.02 MPa and an adsorption efficiency for Pb2+ of 94.33%. Comprehensive analysis (encompassing bulk density, cylinder compressive strength, water absorption, and the leaching concentrations of heavy metals) confirmed that SDC-H impacted the specification threshold of high-strength light aggregate derived from solid waste (T/CSTM 00548-2022). Substituting 50% of SDC-H led to a diminution in the mechanical properties but an improvement in the dynamic adsorption capacity of the innovative pervious concrete, registering a mechanical strength of 26.25 MPa and a cumulative adsorption capacity for Pb2+ of 285 mg/g. These performances of pervious concrete containing 50% SDC-H might correlate with the evolution of an interconnected and open-pore structure.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10795757
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine