0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigation of the Mechanical Physical Properties of Fly Ash Modified Magnesium Phosphate Cement Repair Mortar Cured at Varying Temperatures

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 13
Page(s): 88
DOI: 10.3390/buildings13010088
Abstract:

To meet the material requirements for repairing cracked components serving in cold temperatures, the differences in the setting hardening characteristics and physical and mechanical properties of fly ash-modified magnesium phosphate cement (MPC) repair mortar cured at 0 °C and 20 °C were comparatively studied in this paper. The results show that under the same fly ash content, the compressive strength of MPC repair mortar cured at 0 °C is lower than that cured at 20 °C, and the setting time, fluidity, flexural strength, interfacial bonding strength, strength retention rate, and linear shrinkage rate are not significantly deteriorated. The above properties of MPC repair mortar vary with the increase in the fly ash content but still, remain appropriate when the fly ash content is not higher than 15 wt%. The microstructure of MPC is obviously refined when the content of fly ash is 10 wt%. Therefore, the MPC repair mortar cured at 0 °C and 20 °C has good physical and mechanical properties. In particular, the flexural strength and interfacial bonding strength of the specimens cured at 0 °C are higher than that cured at 20 °C at all curing ages, and at the curing age of 3 days, those are 7.9 MPa and 5.4 MPa, respectively.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712128
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine