Investigation of the Mechanical, Microstructure and 3D Fractal Analysis of Nanocalcite-Modified Environmentally Friendly and Sustainable Cementitious Composites
Author(s): |
Mahmoud Ziada
Yosra Tammam Savaş Erdem Roberto Alonso González Lezcano |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 21 December 2021, n. 1, v. 12 |
Page(s): | 36 |
DOI: | 10.3390/buildings12010036 |
Abstract: |
Unlike conventional concrete materials, Engineered Cementitious Composites (ECC) use a micromechanics-based design theory in the material design process. Recently, the use of nanoparticles in various concretes and mortars has increased. This study used nanocalcite to investigate the mechanical, microstructural fractal analysis of environmentally friendly nanocalcite-doped ECC (NCa-ECC). This paper investigated the effects of nanocalcite (NCa) with different contents (0.5, 1, and 1.5% by mass of binder) on the mechanical properties of engineered cementitious composites (ECC). For this purpose, compressive strength, ultrasonic pulse velocity (UPV), and flexural strength tests were conducted to investigate the mechanical properties of the ECC series. In addition, SEM analyses were carried out to investigate the microstructural properties of the ECC series. The content of nanocalcite improved the mechanical and microstructural properties of the nanocalcite-modified ECC series. In addition, the 1 NCa series (1% nanocalcite modified to the mass of the binder) had the best performance among the series used in this study. |
Copyright: | © 2021 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.03 MB
- About this
data sheet - Reference-ID
10648347 - Published on:
07/01/2022 - Last updated on:
01/06/2022