Investigation of the Effects of Freeze-Thaw Cycles on Geomechanical and Acoustic Characteristics of Tuff Specimens under Different Stress Paths
Author(s): |
Yong-gang Xiao
Chang-hong Li Jie Cao Yu Wang Zhi-qiang Hou Nan Hu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2020, v. 2020 |
Page(s): | 1-20 |
DOI: | 10.1155/2020/6689181 |
Abstract: |
In the process of development and construction of open-pit mine slope in the high altitude and cold area, freeze-thaw (F-T) cycles have an important impact on rock engineering structure. F-T cycles lead to the decrease in physical and mechanical properties of rock, which is closely related to the stability of open-pit slope. In this paper, the influence of F-T cycles on geomechanical and acoustic emission (AE) characteristics of tuff specimens under different stress paths was studied by using F-T cycle treatment, in situ AE monitoring, and uniaxial loading test. The results indicated that under the same stress path, the cumulative AE count/energy of rock samples subjected to F-T cycles was less than that of rock samples not subjected to F-T cycles. The peak frequency distribution of AE signal during the loading process of rock specimen presented the phenomenon of frequency bands. The width of the low-frequency band of the rock samples subjected to F-T cycles was larger than that of the rock samples under the natural state. The frequency and width of the high-frequency band of the rock samples subjected to F-T cycles were larger than those of the rock samples under the natural state. The rock samples subjected to F-T cycles had higher plastic strain than those without F-T cycles. According to the uniaxial compression test results of F-T rock samples under different stress paths, the peak stress and peak strain have little change, but the AE characteristics were obviously different. |
Copyright: | © Yong-gang Xiao et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
10.05 MB
- About this
data sheet - Reference-ID
10535959 - Published on:
01/01/2021 - Last updated on:
02/06/2021