0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

An Investigation of the Behaviors and Characteristics of the Interfacial Bonding Capacity between Cement Emulsified Asphalt Composite Binder and Reclaimed Asphalt Pavement

Author(s):
ORCID
ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 14
Page(s): 1217
DOI: 10.3390/buildings14051217
Abstract:

The interfacial bonding capacity between cement emulsified asphalt composite binder (CEACB) and reclaimed asphalt pavement (RAP) plays a critical role in improving the pavement performance of cold recycled asphalt emulsion mixtures (CRAEMs). This study aims to investigate the formation and development of the interfacial bonding capacity between CEACB and RAP. First, the dynamic wettability and the spreading behaviors of CEACB on RAP surfaces were explored according to the surface free energy theory. Second, digital image processing (DIP) technology was employed to recognize interfacial failure patterns. Lastly, the influence of internal and external factors on the interfacial bonding capacity between CEACB and RAP during the curing process was analyzed via grey relational analysis (GRA). The results indicate that a moderate cement content with a mass ratio of asphalt to cement equivalent to 1.0 can significantly enhance the wettability of CEACB on RAP surfaces. By appropriately prolonging the curing time and controlling the curing temperature, it is possible to increase the bonding strength between CEACB and RAP. Additionally, a strong correlation exists between initial wettability and ultimate bonding capacity during the bonding strength curing process. The good wettability that developed in the initial stage of interfacial strength formation relates to the decreased spalling rate of CEACB on the RAP surface. This study is not only devoted to understanding the mechanisms that can enhance CRAEM performance but also provides important guidance for practical engineering applications of cold recycled asphalt pavements.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773676
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine