0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigation of Sound-Absorbing Material Configuration of a Smart Classroom Utilizing Computer Modeling

Author(s):

Medium: journal article
Language(s): English
Published in: Building Acoustics, , n. 3, v. 12
Page(s): 175-188
DOI: 10.1260/135101005774353032
Abstract:

Advancements in information and instruction technology have led to the evolution of a new type of classroom referred to as “smart classrooms”. These have enhanced audio-visual equipment, computers and seating layouts designed to facilitate interactive learning. Placement of different sound-absorbing finishes in an efficient manner improves the listening conditions within the classroom and reduces the amplification of internally generated noise such as that from computers and instructional equipment. This study investigates the best overall configuration of sound-absorbing material placement and characteristics of surface treatment in an attempt to enhance the listening conditions in smart classrooms. A typical layout of a smart classroom was modeled and simulated using room acoustics computer modeling. Acoustics indicators such as Reverberation Time (RT), Sound Clarity (C50) and Speech Transmission Index (STI) were used for comparing alternative cases in optimising sound-absorbing material characteristics and placement. Additionally, measurements were conducted in similar classrooms to assess the magnitude and characteristics of generated noise. To determine the impact of the resulting background noise simulations were carried out. The resulting configuration of sound-absorbing material for a typical smart classroom can also be utilized by architects and educational institutions to enhance the acoustics of existing conventional classrooms in the process of being converted or upgraded.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1260/135101005774353032.
  • About this
    data sheet
  • Reference-ID
    10479320
  • Published on:
    16/11/2020
  • Last updated on:
    16/11/2020
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine